Waterdrive reservoirs: Difference between revisions

m
no edit summary
 
mNo edit summary
Line 1: Line 1:
Waterdrive (or water drive) petroleum reservoirs are characteristically bounded by and in communication with aquifers. As pressure decreases during pressure depletion, the compressed waters within the aquifers expand and overflow into the petroleum reservoir. The invading water helps drive the oil to the producing wells, leading to improved oil recoveries. Like gas reinjection and gas cap expansion, [[Water influx models|water influx]] also acts to mitigate the pressure decline. The degree to which water influx improves oil recovery depends on the size of the adjoining aquifer, the degree of communication between the aquifer and petroleum reservoir, and ultimately the amount of water that encroaches into the reservoir.  
Waterdrive (or water drive) petroleum reservoirs are characteristically bounded by and in communication with aquifers. As pressure decreases during pressure depletion, the compressed waters within the aquifers expand and overflow into the petroleum reservoir. The invading water helps drive the oil to the producing wells, leading to improved oil recoveries. Like gas reinjection and [[Gas cap drive reservoirs|gas cap expansion]], [[Water influx models|water influx]] also acts to mitigate the pressure decline. The degree to which water influx improves oil recovery depends on the size of the adjoining aquifer, the degree of communication between the aquifer and petroleum reservoir, and ultimately the amount of water that encroaches into the reservoir.  


==Overview==
==Overview==
Line 9: Line 9:


== Waterdrive and aquifer classification==
== Waterdrive and aquifer classification==
Waterdrives are classified in several ways. First, they are classified according to the location of the aquifer relative to the reservoir. If the aquifer areally encircles the reservoir, either partially or wholly, the waterdrive is called a peripheral waterdrive. If the aquifer exclusively feeds one side or flank of the reservoir, the waterdrive is called an edgewater drive. If the aquifer underlays the reservoir and feeds it from beneath, the waterdrive is called a bottomwater drive.
Waterdrives are classified in several ways. First, they are classified according to the location of the aquifer relative to the reservoir:
* Peripheral waterdrive -- the aquifer areally encircles the reservoir, either partially or wholly,  
* Edgewater drive -- the aquifer exclusively feeds one side or flank of the reservoir
* Bottomwater drive -- the aquifer underlays the reservoir and feeds it from beneath


Waterdrives also are classified according to the aquifer’s strength and to how well the aquifer delivers recharge water to the reservoir. The aquifer strength also refers to how well the aquifer mitigates the reservoir’s normal pressure decline. A strong aquifer refers to one in which the water-influx rate approaches the reservoir’s fluid withdrawal rate at reservoir conditions. These reservoirs also are called complete waterdrives and are characterized by minimal pressure decline. Strong aquifers are generally very large in size and highly conductive. A moderate or weak aquifer is one in which the water recharge rate is appreciably less than the reservoir’s fluid withdrawal rate. These reservoirs are called partial waterdrives and they are characterized by pressure declines greater than a complete waterdrive but less than a volumetric reservoir. An aquifer’s weakness is related directly to its lack in size or conductivity.  
Waterdrives also are classified according to the aquifer’s strength and to how well the aquifer delivers recharge water to the reservoir. The aquifer strength also refers to how well the aquifer mitigates the reservoir’s normal pressure decline. A strong aquifer refers to one in which the water-influx rate approaches the reservoir’s fluid withdrawal rate at reservoir conditions. These reservoirs also are called complete waterdrives and are characterized by minimal pressure decline. Strong aquifers are generally very large in size and highly conductive. A moderate or weak aquifer is one in which the water recharge rate is appreciably less than the reservoir’s fluid withdrawal rate. These reservoirs are called partial waterdrives and they are characterized by pressure declines greater than a complete waterdrive but less than a volumetric reservoir. An aquifer’s weakness is related directly to its lack in size or conductivity.  
Line 18: Line 21:
First, an understanding of the reservoir’s geology is important. The entire outer surface of the reservoir must be scrutinized carefully to identify communicating and noncommunicating pathways; communicating pathways represent possible water entry points. Geological maps should be consulted to identify the type of reservoir trap and the trapping surfaces. Trapping surfaces represent impenetrable surfaces and are discounted automatically as possible water-entry points. The remaining outer surfaces need to be evaluated and classified. If no communicating pathways exist, then the reservoir can be confidently discounted as a possible waterdrive; however, if communicating pathways exist, then the reservoir remains a candidate waterdrive.  
First, an understanding of the reservoir’s geology is important. The entire outer surface of the reservoir must be scrutinized carefully to identify communicating and noncommunicating pathways; communicating pathways represent possible water entry points. Geological maps should be consulted to identify the type of reservoir trap and the trapping surfaces. Trapping surfaces represent impenetrable surfaces and are discounted automatically as possible water-entry points. The remaining outer surfaces need to be evaluated and classified. If no communicating pathways exist, then the reservoir can be confidently discounted as a possible waterdrive; however, if communicating pathways exist, then the reservoir remains a candidate waterdrive.  


Second, and perhaps most importantly, the water cut history of all producing wells should be recorded and regularly monitored. A steady rise in a well’s water cut is a good indicator of an active aquifer. Although this is among the best indicators, it is not foolproof. For instance, an increasing water cut might be caused by water coning instead of an active waterdrive. Special precautions need to be exercised to avoid water coning. A rising water/oil contact (WOC) is a good indicator of a bottomwater drive. Special attention should be paid to the location of high-water-cut wells. Their location will help define the position of the reservoir/aquifer boundary in peripheral and edgewater drives.  
Second, and perhaps most importantly, the water cut history of all producing wells should be recorded and regularly monitored. A steady rise in a well’s water cut is a good indicator of an active aquifer. Although this is among the best indicators, it is not foolproof. For instance, an increasing water cut might be caused by [[Coning|water coning]] instead of an active waterdrive. Special precautions need to be exercised to avoid water coning. A rising water/oil contact (WOC) is a good indicator of a bottomwater drive. Special attention should be paid to the location of high-water-cut wells. Their location will help define the position of the reservoir/aquifer boundary in peripheral and edgewater drives.  


Third, the change in reservoir pressure also can be a helpful indicator. Strong waterdrive reservoirs are characterized by a slow or negligible pressure decline. Thus, a slower-than-expected pressure decline can help indicate a waterdrive. Material-balance calculations are important to help identify and confirm a slower-than-expected pressure decline.  
Third, the change in reservoir pressure also can be a helpful indicator. Strong waterdrive reservoirs are characterized by a slow or negligible pressure decline. Thus, a slower-than-expected pressure decline can help indicate a waterdrive. Material-balance calculations are important to help identify and confirm a slower-than-expected pressure decline.  
Line 47: Line 50:
</gallery>
</gallery>


As expected, the waterdrive yields a substantially higher recovery. The waterdrive also lengthens the productive life of the reservoir considerably. In this example, the waterdrive recovers 53.2% of the OOIP after 32.6 years, while the solution-gas drive recovers 24.2% of the OOIP after 13.5 years. Both cases assume a terminal oil rate of 20 STB/D. This recovery level indicates a relatively moderate to strong waterdrive. The waterdrive also yields a higher gas recovery (80.5 vs. 53.1%). The water-influx history basically mimics the incremental oil-recovery history. The cumulative encroached water is 58% hydrocarbon pore volume (HCPV) or 0.46 PV. This translates to approximately 1% OOIP incremental recovery for each 0.16 PV (or 2.0% HCPV) of encroached water. The waterdrive in '''Fig. 2''' consistently yields higher producing rates than solution-gas drive.  
As expected, the waterdrive yields a substantially higher recovery. The waterdrive also lengthens the productive life of the reservoir considerably. In this example, the waterdrive recovers 53.2% of the OOIP after 32.6 years, while the [[Solution gas drive reservoirs|solution-gas drive]] recovers 24.2% of the OOIP after 13.5 years. Both cases assume a terminal oil rate of 20 STB/D. This recovery level indicates a relatively moderate to strong waterdrive. The waterdrive also yields a higher gas recovery (80.5 vs. 53.1%). The water-influx history basically mimics the incremental oil-recovery history. The cumulative encroached water is 58% hydrocarbon pore volume (HCPV) or 0.46 PV. This translates to approximately 1% OOIP incremental recovery for each 0.16 PV (or 2.0% HCPV) of encroached water. The waterdrive in '''Fig. 2''' consistently yields higher producing rates than solution-gas drive.  


Also as expected, the waterdrive consistently yields a higher pressure at a given time. The waterdrive yields a lower terminal pressure because lower gas saturations are realized at a given pressure. The example water and solution-gas drives yield final pressures of 471 and 613 psia, respectively.  
Also as expected, the waterdrive consistently yields a higher pressure at a given time. The waterdrive yields a lower terminal pressure because lower gas saturations are realized at a given pressure. The example water and solution-gas drives yield final pressures of 471 and 613 psia, respectively.  
contributors, createpage, createtalk, diff, displaysubtitle, edit, editsandbox, history, member, minoredit, reupload, reupload-own, upload, viewlinktolatest, watch, wysiwyg
129

edits