Recycling hydraulic fracturing wastewater: Difference between revisions

No edit summary
Line 21: Line 21:


==Prevalence of wastewater recycling==
==Prevalence of wastewater recycling==
After stimulation treatment, water used to fracture the well, in amounts as large as 50%, can rise back to the surface, along with the initial production, as flowback water. Flowback and produced waters, both part of the production stream, must be separated from the formation. In most cases, flowback and produced water are disposed into an injection well, put in evaporation ponds, or treated and disposed of according to government regulations. Water management can significantly add to the cost and environmental footprint of oil production and innovations in water management can provide significant economic and environmental gains. New treatment technologies make recycling of water recovered from hydraulic fracturing possible. Methods for recycling fracking water include anaerobic and aerobic biologic treatment, clarification, filtration, electrocoagulation, blending (directly diluting wastewater with freshwater), and evaporation.  
After stimulation treatment, water used to fracture the well, in amounts as large as 50%, can rise back to the surface, along with the initial production, as flowback water. Flowback and produced waters, both part of the production stream, must be separated from the formation. In most cases, flowback and produced water are disposed into an injection well, put in evaporation ponds, or treated and disposed of according to government regulations.<ref name="r3">Lord, P., Weston, M., Fontenelle, L.K., et al. 2013. Recycling Water: Case Studies in Designing Fracturing Fluids Using Flowback, Produced, and Nontraditional Water Sources. Presented at the SPE Latin-American and Caribbean Heath, Safety, Environment and Social Responsibility Conference, Lima, Peru, 26-27 June. SPE-165641-MS. http://dx.doi.org/10.2118/165641-MS.</ref> Water management can significantly add to the cost and environmental footprint of oil production and innovations in water management can provide significant economic and environmental gains. New treatment technologies make recycling of water recovered from hydraulic fracturing possible. Methods for recycling fracking water include anaerobic and aerobic biologic treatment, clarification, filtration, electrocoagulation, blending (directly diluting wastewater with freshwater), and evaporation. <ref name="r5"> Pierce, D., Bertrand, K., CretiuVasiliu, C. 2010. Water Recycling helps with Sustainability. Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, 18-20 October, Brisbane, Queensland, Australia. SPE-134137-MS. http://dx.doi.org/10.2118/134137-MS.</ref>
Recycling of produced water and fracture flowback water for reuse in hydraulic fracturing is on the rise in the development of unconventional resource plays. Factors driving the conservation of water include the limitations in sources of fresh water in areas with a high rate of development, attractive economics of recycling compared with tanker truck transportation costs, minimization of road traffic to reduce environmental impacts, and water disposal costs.
Recycling of produced water and fracture flowback water for reuse in hydraulic fracturing is on the rise in the development of unconventional resource plays.<ref name="r1">Boschee, P. 2012. Handling Produced Water from Hydraulic Fracturing. Oil and Gas Facilities 1 (1): 23—26.</ref> Factors driving the conservation of water include the limitations in sources of fresh water in areas with a high rate of development, attractive economics of recycling compared with tanker truck transportation costs, minimization of road traffic to reduce environmental impacts, and water disposal costs.


==References==
==References==
industry, override, viewlinktolatest, wysiwyg
1,729

edits