Recycling hydraulic fracturing wastewater: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 6: Line 6:
===Anaerobic===
===Anaerobic===


EMIS. 2010. Anaerobic Biological Wastewater Treatment. (February 2010 version). http://emis.vito.be/techniekfiche/anaerobic-biological-wastewater-treatment?language=en (accessed 16 February 2015).  
Generally, anaerobic treatments on wastewater are implemented on concentrated wastewater.<ref name="r1">EMIS. 2010. Anaerobic Biological Wastewater Treatment. (February 2010 version). http://emis.vito.be/techniekfiche/anaerobic-biological-wastewater-treatment?language=en (accessed 16 February 2015).</ref> Anaerobic sludge contains a variety of microorganisms that cooperate to convert organic material to biogas via hydrolysis and acidification.  Biogas typically consists of 70% methane (CH4) and 30% carbon dioxide (CO2) with residual fractions of other gases (e.g. H2 and H2S). The methane can be used as an energy source. Anaerobic reactors can be implemented in a variety of ways. (The figure shows a contact reactor and an upflow reactor. The sludge is mixed with wastewater in the reactor, then separated in the sedimentation tank and returned to the reactor.
Generally, anaerobic treatments on wastewater are implemented on concentrated wastewater. Anaerobic sludge contains a variety of microorganisms that cooperate to convert organic material to biogas via hydrolysis and acidification.  Biogas typically consists of 70% methane (CH4) and 30% carbon dioxide (CO2) with residual fractions of other gases (e.g. H2 and H2S). The methane can be used as an energy source. Anaerobic reactors can be implemented in a variety of ways. (The figure shows a contact reactor and an upflow reactor. The sludge is mixed with wastewater in the reactor, then separated in the sedimentation tank and returned to the reactor.
In the anaerobic upflow reactor, the influent is introduced at the bottom of the vertical reactor. The primarily grain-shaped sludge forms a blanket in the reactor, with the most compact sludge grains at the bottom and the lighter grains and heavier sludge floccules above it. Light sludge floccules are released by the upward flow, but can potentially be collected in a sedimentation tank. Biogas is collected and disposed of at the top of the reactor, separately from the partially purified water and the sludge.
In the anaerobic upflow reactor, the influent is introduced at the bottom of the vertical reactor. The primarily grain-shaped sludge forms a blanket in the reactor, with the most compact sludge grains at the bottom and the lighter grains and heavier sludge floccules above it. Light sludge floccules are released by the upward flow, but can potentially be collected in a sedimentation tank. Biogas is collected and disposed of at the top of the reactor, separately from the partially purified water and the sludge.


Line 27: Line 25:


==References==
==References==
Use this section for citation of items referenced in the text to show your sources. [The sources should be available to the reader, i.e., not an internal company document.]
<references>
<ref name="r1">EMIS. 2010. Anaerobic Biological Wastewater Treatment. (February 2010 version). http://emis.vito.be/techniekfiche/anaerobic-biological-wastewater-treatment?language=en (accessed 16 February 2015).</ref>


</references>
==Noteworthy papers in OnePetro==
==Noteworthy papers in OnePetro==
Campin, D. 2013. Environmental Regulation of Hydraulic Fracturing in Queensland. Presented at the SPE Annual Technical Conference and Exhibition, 30 September-2 October, New Orleans. SPE-166146-MS. http://dx.doi.org/10.2118/166146-MS.  
Campin, D. 2013. Environmental Regulation of Hydraulic Fracturing in Queensland. Presented at the SPE Annual Technical Conference and Exhibition, 30 September-2 October, New Orleans. SPE-166146-MS. http://dx.doi.org/10.2118/166146-MS.  
industry, override, viewlinktolatest, wysiwyg
1,729

edits