You must log in to edit PetroWiki. Help with editing

Content of PetroWiki is intended for personal use only and to supplement, not replace, engineering judgment. SPE disclaims any and all liability for your use of such content. More information


Nanotechnology in hydrogen sulfide detection

PetroWiki
Jump to navigation Jump to search

Hydrogen sulfide (H2S) leaks can cause problems that affect both workers and equipment in the drilling industry. The explosive gas naturally occurs in oil and natural gas deposits. The lesser risk from H2S, corrosion of metal, paint, and epoxy, can be prevented with the use of special coating. The greater risk, the risk to the health of industry workers, can be prevented with detection equipment. More recently, nanotechnology has been tested to detect H2S in the air.

Presence in reservoirs

The presence of H2S in reservoir fluids is a major problem for the petroleum industry and is associated with reservoir souring, iron sulfide deposition, poor sweep efficiency, and increased corrosion. Its occurrence may cause the early abandonment of many oil and gas reservoirs by increased costs, reduced revenue, and environmental concerns. In many cases, reservoirs that initially did not contain sulfide have become sour as a result of operations. This progressive increase in sulfide levels is most notable in reservoirs that were flooded with seawater.[1]

Health effects of hydrogen sulfide

H2S poses multiple health risks to people working around it, ranging from watery eyes to nausea or migraines, coma, and even death.[2] The gas is classed as a chemical asphyxiant, in the same category as carbon monoxide and cyanide gases. It inhibits cellular respiration and uptake of oxygen, causing biochemical suffocation. Common exposure symptoms include:

Concentration

(ppm)

Symptoms/Effects
0.00011-0.00033 Typical background concentrations
0.01-1.5 Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly sweet.
2-5 Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of sleep. Airway problems (bronchial constriction) in some asthma patients.
20 Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May cause digestive upset and loss of appetite.
100 Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 Loss of smell (olfactory fatigue or paralysis).
200-300 Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema may occur from prolonged exposure.
500-700 Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death after 30-60 minutes.
700-1000 Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths, breathing stops, death within minutes.
1000-2000 Nearly instant death

Source: United States Department of Labor[3]

Working with hydrogen sulfide

Most countries have legal limits in force that govern the maximum allowable levels of exposure to hydrogen sulfide in the working environment. A typical allowed exposure limit in multiple countries is 10 ppm. While the distinctive odor of H2S is easily detected, it causes olfactory fatigue, therefore one cannot rely on the nose as a warning device. The only way to accurately determine H2S exposure levels is to measure the amount in the air. With a vapor density of 1.19, H2S is about 20 percent heavier than air, so this invisible gas will collect in depressions in the ground and in confined spaces.Cite error: Closing </ref> missing for <ref> tag [4] [5] </reference>

Noteworthy papers in OnePetro

Awad, M., and Macwan, N. 2012. H2S Risk Management. Abu Dhabi International Petroleum Conference and Exhibition, Abu Dhabi, 11-14 November. SPE-162613-MS. http://dx.doi.org/10.2118/162613-MS.

Battle, J. A., and Russell, J. 1977. Plastic Coatings Can Be Used Successfully In Hydrogen Sulfide Environments. Presented at the SPE Symposium on Sour Gas and Crude, Tyler, Texas, USA.14-15 November, . SPE-6661-MS. http://dx.doi.org/10.2118/6661-MS.

Bouhroum, A., Marx, C., and Schade, W. 1990. Effect of H2S on Coatings. Midland, Texas, USA. Presented at the Permian Basin Oil and Gas Recovery Conference, 8-9 March. SPE-20110-MS. http://dx.doi.org/10.2118/20110-MS.

Carter, D. R., and Adams, N. J. 1979. Hydrogen Sulfide In The Drilling Industry. SPE Deep Drilling and Production Symposium, Amarillo, Texas, USA, 1-3 April. SPE-7854-MS. http://dx.doi.org/10.2118/7854-MS.

Elshahawi, H., and Hashem, M. N. 2005. Accurate Measurement of the Hydrogen Sulfide Content in Formation Fluid Samples-Case Studies. SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9-12 October. SPE-94707-MS. http://dx.doi.org/10.2118/94707-MS.

Hill, D. G., and DeMott, D. N.1977. Effect Of Hydrogen Sulfide On The Inhibition Of Oil Field Tubing In Hydrochloric Acid. Presented at the SPE Symposium on Sour Gas and Crude, Tyler, Texas, USA, 14-15 November. SPE-6660-MS. http://dx.doi.org/10.2118/6660-MS.

Hirezi, G. J., Al-Khelaiwi, F. T., and Al-Khamis, M. N. 2012. H2S Early Notification System for Production Pipelines: A Pilot Test. Abu Dhabi International Petroleum Conference and Exhibition, Abu Dhabi, 11-14 November. SPE-161062-MS. http://dx.doi.org/10.2118/161062-MS.

Mickelson, W., Sussman, A., Zhou, Q., et al. 2013. An Innovative Wireless H2S Sensor Based On Nanotechnology To Improve Safety In Oil & Gas Facilities. SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, UK, 3-6 September. SPE-166544-MS. http://dx.doi.org/10.2118/166544-MS.

Naranjo, E., and Kornbech, M. 2008. Hydrogen Sulfide Detection in Offshore Platforms. SPE Middle East Heath, Safety, Security, and Environment Conference and Exhibition, Doha, Qatar, 20-22 October. doi:10.2118/120932-MS.

Roth, D., White, B., Benavides, et al, R. 2001, January 1. Automated Chemical Control of H2S Content of Natural Gas. SPE Production and Operations Symposium, Oklahoma City, 24-27 March. SPE-67247-MS. http://dx.doi.org/10.2118/67247-MS.

Samuels, A. 1974. H2S Need Not Be Deadly, Dangerous, Destructive. Presented at the SPE Symposium on Sour Gas and Crude, Tyler, Texas, USA, 11-12 November. SPE-5202-MS. http://dx.doi.org/10.2118/5202-MS.

Zea, L., Cooper, D., and Kumar, R. 2011. Hydrogen Sulfide Absorption Phenomena in Brine/Oil Mixtures. SPE Journal 16 (4): 931--939. http://dx.doi.org/10.2118/145401-PA.

External links

Use this section to provide links to relevant material on websites other than PetroWiki and OnePetro

See also

Use this section for links to related pages within PetroWiki, including a link to the original PEH text where appropriate

  1. Hitzman, D. O., and Dennis, D. M. 1998. Sulfide Removal and Prevention in Gas Wells. SPE Res Eval & Eng 1(4): 367--371. http://dx.doi.org/10.2118/50980-PA.
  2. SafetyDirectory. 2014. H2S Safety Factsheet. http://www.safetydirectory.com/hazardous_substances/hydrogen_sulfide/fact_sheet.htm.
  3. United States Department of Labor. Hydrogen Sulfide. https://www.osha.gov/SLTC/hydrogensulfide/hazards.html.
  4. SafetyDirectory. 2014. H2S Safety Factsheet. http://www.safetydirectory.com/hazardous_substances/hydrogen_sulfide/fact_sheet.htm.
  5. United States Department of Labor. Hydrogen Sulfide. https://www.osha.gov/SLTC/hydrogensulfide/hazards.html.