Micelle: Difference between revisions

349 bytes added ,  29 December 2015
no edit summary
No edit summary
No edit summary
Line 25: Line 25:
== Detection ==
== Detection ==


Micelles are neutral buoyancy droplets with dimensions typically ranging from 10 to 300 nm and so they are very difficult to detect using conventional direct methods. The most promising techniques use indirect micelle detection from fluorescent reporter additives which can be added to test solutions in low concentrations to locate within micelles and produce a measurable and proportional fluorescent response<ref name="r5">Mackenzie, C. D., & Perfect, E. (2012, January 1). Micelle Detection for Optimising Corrosion Inhibitor Dose on an Offshore Platform. Society of Petroleum Engineers. http://dx.doi.org/10.2118/155107-MS.</ref>. Such techniques are used widely in research and diagnostic testing in the life sciences. It has been shown that many oilfield corrosion inhibitors behave as typical surfactants, with defined CMC’s and a proportional relationship between numbers of micelles and fluorescence intensity and peak emission wavelength <ref name="r6">Mackenzie, C. D., Magdalenic, V., Perfect, E., Achour, M., Blumer, D. J., Joosten, M. W., & Rowe, M. (2010, January 1). Development of a New Corrosion Management Tool - Inhibitor Micelle Presence as an Indicator of Optimum Dose. Society of Petroleum Engineers. http://dx.doi.org/10.2118/130285-MS</ref>. This has previously been shown to allow the use of a portable handheld fluorescence reader to allow for simple measurements in the field . For such a device to function, visible light must be able to pass in
Micelles are neutral buoyancy droplets with dimensions typically ranging from 10 to 300 nm and so they are very difficult to detect using conventional direct methods. The most promising techniques use indirect micelle detection from fluorescent reporter additives which can be added to test solutions in low concentrations to locate within micelles and produce a measurable and proportional fluorescent response<ref name="r5">Mackenzie, C. D., & Perfect, E. 2012. Micelle Detection for Optimising Corrosion Inhibitor Dose on an Offshore Platform. Society of Petroleum Engineers. http://dx.doi.org/10.2118/155107-MS.</ref>. Such techniques are used widely in research and diagnostic testing in the life sciences. It has been shown that many oilfield corrosion inhibitors behave as typical surfactants, with defined CMC’s and a proportional relationship between numbers of micelles and fluorescence intensity and peak emission wavelength <ref name="r6">Mackenzie, C. D., Magdalenic, V., Perfect, E., Achour, M., Blumer, D. J., Joosten, M. W., & Rowe, M. 2010. Development of a New Corrosion Management Tool - Inhibitor Micelle Presence as an Indicator of Optimum Dose. Society of Petroleum Engineers. http://dx.doi.org/10.2118/130285-MS</ref>. This has previously been shown to allow the use of a portable handheld fluorescence reader to allow for simple measurements in the field . For such a device to function, visible light must be able to pass in to and out of the analyte solution without being impeded and, knowing the turbid nature of many oilfield samples, alternatives instruments have been investigated. <ref name="r5">Mackenzie, C. D., & Perfect, E. 2012. Micelle Detection for Optimising Corrosion Inhibitor Dose on an Offshore Platform. Society of Petroleum Engineers. http://dx.doi.org/10.2118/155107-MS.</ref>.


== References ==
== References ==
Automoderated users, Bureaucrats, checkuser, contributors, createpage, diff, display-new-unapproved-content, displaysubtitle, edit, editsandbox, history, industry, Interface administrators, member, memberonlyaccess, minoredit, Moderators, override, reupload, reupload-own, Staff, Administrators, upload, Upload Wizard campaign editors, viewlinktolatest, watch, widgeteditor, wysiwyg
7,247

edits