Fluid flow in naturally fractured reservoirs: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 9: Line 9:
</gallery>
</gallery>


Several models have been proposed to represent the pressure behavior in a naturally fractured reservoir. These models differ conceptually only in the assumptions made to describe fluid flow in the matrix. Most dual-porosity models assume that production from the naturally fractured system comes from the matrix, to the fracture, and then to the wellbore (i.e., that the matrix does not produce directly into the wellbore). Furthermore, the models assume that the matrix has low permeability but large storage capacity relative to the natural fracture system, while the fractures have high permeability but low storage capacity relative to the natural fracture system. Warren and Root<ref name="r1">_</ref> introduced two dual-porosity parameters, in addition to the usual single-porosity parameters, which can be used to describe dual-porosity reservoirs.
Several models have been proposed to represent the pressure behavior in a naturally fractured reservoir. These models differ conceptually only in the assumptions made to describe fluid flow in the matrix. Most dual-porosity models assume that production from the naturally fractured system comes from the matrix, to the fracture, and then to the wellbore (i.e., that the matrix does not produce directly into the wellbore). Furthermore, the models assume that the matrix has low permeability but large storage capacity relative to the natural fracture system, while the fractures have high permeability but low storage capacity relative to the natural fracture system. Warren and Root<ref name="r1">Warren, J.E. and Root, P.J. 1963. The Behavior of Naturally Fractured Reservoirs. SPE J. 3 (3): 245–255. SPE-426-PA. http://dx.doi.org/10.2118/426-PA.</ref> introduced two dual-porosity parameters, in addition to the usual single-porosity parameters, which can be used to describe dual-porosity reservoirs.


Interporosity flow is the fluid exchange between the two media (the matrix and fractures) constituting a dual-porosity system. Warren and Root<ref name="r1">_</ref> defined the interporosity flow coefficient, ''λ'', as
Interporosity flow is the fluid exchange between the two media (the matrix and fractures) constituting a dual-porosity system. Warren and Root<ref name="r1">Warren, J.E. and Root, P.J. 1963. The Behavior of Naturally Fractured Reservoirs. SPE J. 3 (3): 245–255. SPE-426-PA. http://dx.doi.org/10.2118/426-PA.</ref> defined the interporosity flow coefficient, ''λ'', as


[[File:Vol5 page 0797 eq 001.png|RTENOTITLE]]....................(1)
[[File:Vol5 page 0797 eq 001.png|RTENOTITLE]]....................(1)
Line 17: Line 17:
where ''k''<sub>''m''</sub> is the permeability of the matrix, k<sub>f</sub> is the permeability of the natural fractures, and α is the parameter characteristic of the system geometry.
where ''k''<sub>''m''</sub> is the permeability of the matrix, k<sub>f</sub> is the permeability of the natural fractures, and α is the parameter characteristic of the system geometry.


The interporosity flow coefficient is a measure of how easily fluid flows from the matrix to the fractures. The parameter α is defined by<ref name="r2">_</ref>
The interporosity flow coefficient is a measure of how easily fluid flows from the matrix to the fractures. The parameter α is defined by<ref name="r2">Gringarten, A.C. 1984. Interpretation of Tests in Fissured and Multilayered Reservoirs With Double-Porosity Behavior: Theory and Practice. J Pet Technol 36 (4): 549-564. SPE-10044-PA. http://dx.doi.org/10.2118/10044-PA.</ref>


[[File:Vol5 page 0797 eq 002.png|RTENOTITLE]]....................(2)
[[File:Vol5 page 0797 eq 002.png|RTENOTITLE]]....................(2)


where ''L'' is a characteristic dimension of a matrix block and ''j'' is the number of normal sets of planes limiting the less-permeable medium (''j'' = 1, 2, 3). For example, ''j'' = 3 in the idealized reservoir cube model in '''Fig. 1'''. On the other hand, for the multilayered or "slab" model shown in '''Fig. 2''', <ref name="r3">_</ref> ''j'' = 1. For the slab model, letting ''L'' = ''h''<sub>''m''</sub> (the thickness of an individual matrix block), ''λ'' becomes
where ''L'' is a characteristic dimension of a matrix block and ''j'' is the number of normal sets of planes limiting the less-permeable medium (''j'' = 1, 2, 3). For example, ''j'' = 3 in the idealized reservoir cube model in '''Fig. 1'''. On the other hand, for the multilayered or "slab" model shown in '''Fig. 2''', <ref name="r3">Serra, K., Reynolds, A.C., and Raghavan, R. 1983. New Pressure Transient Analysis Methods for Naturally Fractured Reservoirs(includes associated papers 12940 and 13014 ). J Pet Technol 35 (12): 2271-2283. SPE-10780-PA. http://dx.doi.org/10.2118/10780-PA.</ref> ''j'' = 1. For the slab model, letting ''L'' = ''h''<sub>''m''</sub> (the thickness of an individual matrix block), ''λ'' becomes


[[File:Vol5 page 0797 eq 003.png|RTENOTITLE]]....................(3)
[[File:Vol5 page 0797 eq 003.png|RTENOTITLE]]....................(3)


The storativity ratio, <ref name="r2">_</ref> ''ω'', is defined by
The storativity ratio, <ref name="r2">Gringarten, A.C. 1984. Interpretation of Tests in Fissured and Multilayered Reservoirs With Double-Porosity Behavior: Theory and Practice. J Pet Technol 36 (4): 549-564. SPE-10044-PA. http://dx.doi.org/10.2118/10044-PA.</ref> ''ω'', is defined by


[[File:Vol5 page 0797 eq 004.png|RTENOTITLE]]....................(4)
[[File:Vol5 page 0797 eq 004.png|RTENOTITLE]]....................(4)
Line 35: Line 35:
</gallery>
</gallery>


Many models have been developed for naturally fractures reservoirs. Two common models, pseudosteady-state and transient flow, that describe flow in the less-permeable matrix are presented here. Pseudosteady-state flow was assumed by Warren and Root<ref name="r1">_</ref> and Barenblatt ''et al.''<ref name="r4">_</ref>; others, notably deSwaan, <ref name="r5">_</ref> assumed transient flow in the matrix. Intuition suggests that, in a low-permeability matrix, very long times should be required to reach pseudosteady-state and that transient matrix flow should dominate; however, test analysis suggests that pseudosteady-state flow is quite common. A possible explanation of this apparent inconsistency is that matrix flow is almost always transient but can exhibit a behavior much like pseudosteady-state, if there is a significant impediment to flow from the less-permeable medium to the more-permeable one (such as low-permeability solution deposits on the faces of fractures).
Many models have been developed for naturally fractures reservoirs. Two common models, pseudosteady-state and transient flow, that describe flow in the less-permeable matrix are presented here. Pseudosteady-state flow was assumed by Warren and Root<ref name="r1">Warren, J.E. and Root, P.J. 1963. The Behavior of Naturally Fractured Reservoirs. SPE J. 3 (3): 245–255. SPE-426-PA. http://dx.doi.org/10.2118/426-PA.</ref> and Barenblatt ''et al.''<ref name="r4">Barenblatt, G.E., Zheltov, I.P., and Kochina, I.N. 1960. Basic Concepts in the Theory of Homogeneous Liquids in Fissured Rocks. J. Appl. Math. Mech. 24: 1286-1303.</ref>; others, notably deSwaan, <ref name="r5">de Swaan O., A. 1976. Analytical Solutions for Determining Naturally Fractured Reservoir Properties by Well Testing. SPE J. 16 (3): 117–122. SPE-5346-PA. http://dx.doi.org/10.2118/5346-PA.</ref> assumed transient flow in the matrix. Intuition suggests that, in a low-permeability matrix, very long times should be required to reach pseudosteady-state and that transient matrix flow should dominate; however, test analysis suggests that pseudosteady-state flow is quite common. A possible explanation of this apparent inconsistency is that matrix flow is almost always transient but can exhibit a behavior much like pseudosteady-state, if there is a significant impediment to flow from the less-permeable medium to the more-permeable one (such as low-permeability solution deposits on the faces of fractures).


== Pseudosteady-state matrix flow model ==
== Pseudosteady-state matrix flow model ==
Line 45: Line 45:
=== Semilog analysis technique ===
=== Semilog analysis technique ===


The pseudosteady-state matrix flow solution developed by Warren and Root<ref name="r1">_</ref> predicts that, on a semilog graph of test data, two parallel straight lines will develop. '''Fig. 3''' shows this characteristic pressure response.
The pseudosteady-state matrix flow solution developed by Warren and Root<ref name="r1">Warren, J.E. and Root, P.J. 1963. The Behavior of Naturally Fractured Reservoirs. SPE J. 3 (3): 245–255. SPE-426-PA. http://dx.doi.org/10.2118/426-PA.</ref> predicts that, on a semilog graph of test data, two parallel straight lines will develop. '''Fig. 3''' shows this characteristic pressure response.


<gallery widths="300px" heights="200px">
<gallery widths="300px" heights="200px">
Line 55: Line 55:
Finally, the matrix and the fracture each reach an equilibrium condition, and a second straight line appears. At this time, the reservoir again is behaving like a homogeneous system, but now the system consists of both the matrix and the fractures. The slope of the second semilog straight line is proportional to the total permeability-thickness product of the matrix/fracture system. Because the permeability of the fractures is much greater than that of the matrix, the slope of the second line is almost identical to that of the initial line.
Finally, the matrix and the fracture each reach an equilibrium condition, and a second straight line appears. At this time, the reservoir again is behaving like a homogeneous system, but now the system consists of both the matrix and the fractures. The slope of the second semilog straight line is proportional to the total permeability-thickness product of the matrix/fracture system. Because the permeability of the fractures is much greater than that of the matrix, the slope of the second line is almost identical to that of the initial line.


Similar shapes are predicted for pressure buildup tests ('''Fig. 4'''). The lower curve, A, represents the ideal buildup test plot predicted by Warren and Root. <ref name="r1">_</ref> The shape of a semilog plot of test data from a naturally fractured reservoir is almost never the same as that predicted by Warren and Root’s model. Wellbore storage almost always obscures the initial straight line and often obscures part of the transition region between the straight lines. The upper curve, ''B'', in '''Fig. 4''' shows a more common pressure response.
Similar shapes are predicted for pressure buildup tests ('''Fig. 4'''). The lower curve, A, represents the ideal buildup test plot predicted by Warren and Root. <ref name="r1">Warren, J.E. and Root, P.J. 1963. The Behavior of Naturally Fractured Reservoirs. SPE J. 3 (3): 245–255. SPE-426-PA. http://dx.doi.org/10.2118/426-PA.</ref> The shape of a semilog plot of test data from a naturally fractured reservoir is almost never the same as that predicted by Warren and Root’s model. Wellbore storage almost always obscures the initial straight line and often obscures part of the transition region between the straight lines. The upper curve, ''B'', in '''Fig. 4''' shows a more common pressure response.


<gallery widths="300px" heights="200px">
<gallery widths="300px" heights="200px">
Line 61: Line 61:
</gallery>
</gallery>


The reservoir permeability-thickness product, ''kh'' [actually the ''kh'' of the fractures, or (''kh'')<sub>''f''</sub>, because (''kh'') m is usually negligible], can be obtained from the slope, ''m'', of the two semilog straight lines. Storativity, ''ω'', can be determined from their vertical displacement, ''δp''. The interporosity flow coefficient, ''λ'', can be obtained from the time of intersection of a horizontal line, drawn through the middle of the transition curve, with either the first or second semilog straight line. <ref name="r2">_</ref>
The reservoir permeability-thickness product, ''kh'' [actually the ''kh'' of the fractures, or (''kh'')<sub>''f''</sub>, because (''kh'') m is usually negligible], can be obtained from the slope, ''m'', of the two semilog straight lines. Storativity, ''ω'', can be determined from their vertical displacement, ''δp''. The interporosity flow coefficient, ''λ'', can be obtained from the time of intersection of a horizontal line, drawn through the middle of the transition curve, with either the first or second semilog straight line. <ref name="r2">Gringarten, A.C. 1984. Interpretation of Tests in Fissured and Multilayered Reservoirs With Double-Porosity Behavior: Theory and Practice. J Pet Technol 36 (4): 549-564. SPE-10044-PA. http://dx.doi.org/10.2118/10044-PA.</ref>


When semilog analysis is possible (i.e., when the correct semilog straight line can be identified), the following procedure is recommended for semilog analysis of buildup or drawdown test data from wells completed in naturally fractured reservoirs. Although presented in variables for slightly compressible fluids (liquids), the same procedure is applicable to gas well tests when the appropriate variables are used.
When semilog analysis is possible (i.e., when the correct semilog straight line can be identified), the following procedure is recommended for semilog analysis of buildup or drawdown test data from wells completed in naturally fractured reservoirs. Although presented in variables for slightly compressible fluids (liquids), the same procedure is applicable to gas well tests when the appropriate variables are used.
Line 79: Line 79:
[[File:Vol5 page 0800 eq 004.png|RTENOTITLE]]....................(8)
[[File:Vol5 page 0800 eq 004.png|RTENOTITLE]]....................(8)


The interporosity flow coefficient, ''λ'', is calculated<ref name="r2">_</ref> for a drawdown test by
The interporosity flow coefficient, ''λ'', is calculated<ref name="r2">Gringarten, A.C. 1984. Interpretation of Tests in Fissured and Multilayered Reservoirs With Double-Porosity Behavior: Theory and Practice. J Pet Technol 36 (4): 549-564. SPE-10044-PA. http://dx.doi.org/10.2118/10044-PA.</ref> for a drawdown test by


[[File:Vol5 page 0800 eq 005.png|RTENOTITLE]]....................(9)
[[File:Vol5 page 0800 eq 005.png|RTENOTITLE]]....................(9)
Line 107: Line 107:
=== Type curve analysis technique ===
=== Type curve analysis technique ===


Particularly because of wellbore-storage distortion, type curves are quite useful for identifying and analyzing dual-porosity systems. '''Fig. 6''' shows an example of the Bourdet ''et al.''<ref name="r6">_</ref> type curves developed for pseudosteady-state matrix flow. Initially, test data follow a curve for some value of ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> where ''C''<sub>''D''</sub> is the dimensionless wellbore storage coefficient. In '''Fig. 6''', the earliest data for the well follow the curve for ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> = 1. The data then deviate from the early fit and follow a transition curve characterized by the parameter ''λe''<sup>-2''s''</sup>. In '''Fig. 6''', the data follow the curve for ''λe''<sup>–2''s''</sup> = 3×10<sup>–4</sup>. When equilibrium is reached between the matrix and fracture systems, the data then follow another ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> curve. In the example, the later data follow the ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> = 0.1 curve.
Particularly because of wellbore-storage distortion, type curves are quite useful for identifying and analyzing dual-porosity systems. '''Fig. 6''' shows an example of the Bourdet ''et al.''<ref name="r6">Bourdet, D. et al. 1984. New Type Curves Aid Analysis of Fissured Zone Well Tests. World Oil (April).</ref> type curves developed for pseudosteady-state matrix flow. Initially, test data follow a curve for some value of ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> where ''C''<sub>''D''</sub> is the dimensionless wellbore storage coefficient. In '''Fig. 6''', the earliest data for the well follow the curve for ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> = 1. The data then deviate from the early fit and follow a transition curve characterized by the parameter ''λe''<sup>-2''s''</sup>. In '''Fig. 6''', the data follow the curve for ''λe''<sup>–2''s''</sup> = 3×10<sup>–4</sup>. When equilibrium is reached between the matrix and fracture systems, the data then follow another ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> curve. In the example, the later data follow the ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> = 0.1 curve.


<gallery widths="300px" heights="200px">
<gallery widths="300px" heights="200px">
Line 115: Line 115:
At earliest times, the reservoir is behaving like a homogeneous reservoir with all fluid originating from the fracture system. During intermediate times, there is a transition region as the matrix begins to produce into the fractures. At later times, the system again is behaving like a homogeneous system with both matrix and fractures contributing to fluid production.
At earliest times, the reservoir is behaving like a homogeneous reservoir with all fluid originating from the fracture system. During intermediate times, there is a transition region as the matrix begins to produce into the fractures. At later times, the system again is behaving like a homogeneous system with both matrix and fractures contributing to fluid production.


'''Fig. 7''' illustrates the derivative type curves for a formation with pseudosteady-state matrix flow. <ref name="r6">_</ref> The most notable feature, characteristic of naturally fractured reservoirs, is the dip below the homogeneous reservoir curve. The curves dipping downward are characterized by a parameter ''λC''<sub>''D''</sub>/''ω'' (1 − ''ω''), while the curves returning to the homogeneous reservoir curves are characterized by the parameter ''λC''<sub>''D''</sub>/''ω'' (1 − ''ω''). Test data that follow this pattern on the derivative type curve can reasonably be interpreted as identifying a dual-porosity reservoir with pseudosteady-state matrix flow (a theory that needs to be confirmed with geological information and reservoir performance). Pressure and pressure derivative type curves can be used together for analysis of a dual-porosity reservoir. The pressure derivative data are especially useful for identifying the dual-porosity behavior. Manual type-curve analysis for well in naturally fractured reservoirs is tedious, and the interpretation involved is difficult. Most current analysis uses commercial software.
'''Fig. 7''' illustrates the derivative type curves for a formation with pseudosteady-state matrix flow. <ref name="r6">Bourdet, D. et al. 1984. New Type Curves Aid Analysis of Fissured Zone Well Tests. World Oil (April).</ref> The most notable feature, characteristic of naturally fractured reservoirs, is the dip below the homogeneous reservoir curve. The curves dipping downward are characterized by a parameter ''λC''<sub>''D''</sub>/''ω'' (1 − ''ω''), while the curves returning to the homogeneous reservoir curves are characterized by the parameter ''λC''<sub>''D''</sub>/''ω'' (1 − ''ω''). Test data that follow this pattern on the derivative type curve can reasonably be interpreted as identifying a dual-porosity reservoir with pseudosteady-state matrix flow (a theory that needs to be confirmed with geological information and reservoir performance). Pressure and pressure derivative type curves can be used together for analysis of a dual-porosity reservoir. The pressure derivative data are especially useful for identifying the dual-porosity behavior. Manual type-curve analysis for well in naturally fractured reservoirs is tedious, and the interpretation involved is difficult. Most current analysis uses commercial software.


<gallery widths="300px" heights="200px">
<gallery widths="300px" heights="200px">
Line 133: Line 133:
Flow regime 1 occurs at early times during which all production comes from the fractures. Flow regime 2 occurs when production from the matrix into the fracture begins and continues until the matrix-to-fracture transfer reaches equilibrium. This equilibrium point marks the beginning of flow regime 3, during which total system flow, from matrix to fracture to wellbore, is dominant. The same three flow regimes appear when there is pseudosteady-state matrix flow. The duration and shape of the transition flow regimes, however, is considerably different for the two matrix flow models.
Flow regime 1 occurs at early times during which all production comes from the fractures. Flow regime 2 occurs when production from the matrix into the fracture begins and continues until the matrix-to-fracture transfer reaches equilibrium. This equilibrium point marks the beginning of flow regime 3, during which total system flow, from matrix to fracture to wellbore, is dominant. The same three flow regimes appear when there is pseudosteady-state matrix flow. The duration and shape of the transition flow regimes, however, is considerably different for the two matrix flow models.


Serra ''et al.''<ref name="r3">_</ref> observed that pressures from each of these flow regimes will plot as straight lines on conventional semilog graphs. Flow regimes 1 and 3, which correspond to the classical early- and late-time semilog straight-line periods, respectively, have the same slope. Flow regime 2 is an intermediate transitional period between the first and third flow regimes. The semilog straight line of flow regime 2 has a slope of approximately one-half that of flow regimes 1 and 3. If all or any two of these regimes can be identified, then a complete analysis is possible using semilog methods alone. Certain nonideal conditions, however, may make this analysis difficult to apply.
Serra ''et al.''<ref name="r3">Serra, K., Reynolds, A.C., and Raghavan, R. 1983. New Pressure Transient Analysis Methods for Naturally Fractured Reservoirs(includes associated papers 12940 and 13014 ). J Pet Technol 35 (12): 2271-2283. SPE-10780-PA. http://dx.doi.org/10.2118/10780-PA.</ref> observed that pressures from each of these flow regimes will plot as straight lines on conventional semilog graphs. Flow regimes 1 and 3, which correspond to the classical early- and late-time semilog straight-line periods, respectively, have the same slope. Flow regime 2 is an intermediate transitional period between the first and third flow regimes. The semilog straight line of flow regime 2 has a slope of approximately one-half that of flow regimes 1 and 3. If all or any two of these regimes can be identified, then a complete analysis is possible using semilog methods alone. Certain nonideal conditions, however, may make this analysis difficult to apply.


Flow regime 1 often is distorted or obscured by wellbore storage, which often makes this flow regime difficult to identify. Flow regime 2, the transition, also may be obscured by wellbore storage. Flow regime 3 sometimes requires a long flow period followed by a long shut-in time to be observed, especially in formations with low permeability. Furthermore, boundary effects may appear before flow regime 3 is fully developed.
Flow regime 1 often is distorted or obscured by wellbore storage, which often makes this flow regime difficult to identify. Flow regime 2, the transition, also may be obscured by wellbore storage. Flow regime 3 sometimes requires a long flow period followed by a long shut-in time to be observed, especially in formations with low permeability. Furthermore, boundary effects may appear before flow regime 3 is fully developed.
Line 139: Line 139:
=== Semilog analysis techniques ===
=== Semilog analysis techniques ===


Serra ''et al.''<ref name="r3">_</ref> presented a semilog method for analyzing well test data in dual-porosity reservoirs exhibiting transient matrix flow ('''Fig. 8'''). They found that the existence of the transition region, flow regime 2, and either flow regime 1 or flow regime 3 is sufficient to obtain a complete analysis of drawdown or buildup test data. Further, they assumed unsteady-state flow in the matrix, no wellbore storage, and rectangular matrix-block geometry, as Fig. 2 shows. The rectangular matrix-block geometry is adequate, although different assumed geometries can lead to slightly different interpretation results.
Serra ''et al.''<ref name="r3">Serra, K., Reynolds, A.C., and Raghavan, R. 1983. New Pressure Transient Analysis Methods for Naturally Fractured Reservoirs(includes associated papers 12940 and 13014 ). J Pet Technol 35 (12): 2271-2283. SPE-10780-PA. http://dx.doi.org/10.2118/10780-PA.</ref> presented a semilog method for analyzing well test data in dual-porosity reservoirs exhibiting transient matrix flow ('''Fig. 8'''). They found that the existence of the transition region, flow regime 2, and either flow regime 1 or flow regime 3 is sufficient to obtain a complete analysis of drawdown or buildup test data. Further, they assumed unsteady-state flow in the matrix, no wellbore storage, and rectangular matrix-block geometry, as Fig. 2 shows. The rectangular matrix-block geometry is adequate, although different assumed geometries can lead to slightly different interpretation results.


The major weakness of the Serra ''et al.'' method is that it assumes no wellbore storage. In many cases, flow regimes 1 and 2 are partially or even totally obscured by wellbore storage, making analysis by the Serra ''et al.'' method impossible or difficult. Despite this limitation, the Serra ''et al.'' method has great practical value when used in conjunction with type-curve methods. These calculations of the Serra ''et al.'' method apply to both buildup and drawdown test data and are applicable for well test analysis of slightly compressible liquids and gas well tests.
The major weakness of the Serra ''et al.'' method is that it assumes no wellbore storage. In many cases, flow regimes 1 and 2 are partially or even totally obscured by wellbore storage, making analysis by the Serra ''et al.'' method impossible or difficult. Despite this limitation, the Serra ''et al.'' method has great practical value when used in conjunction with type-curve methods. These calculations of the Serra ''et al.'' method apply to both buildup and drawdown test data and are applicable for well test analysis of slightly compressible liquids and gas well tests.
Line 145: Line 145:
=== Type curve analysis technique ===
=== Type curve analysis technique ===


Bourdet ''et al.''<ref name="r6">_</ref> presented type curves for analyzing well tests in dual-porosity reservoirs including the effects of wellbore storage and unsteady-state flow in the matrix. The type curves are useful supplements to the Serra ''et al.'' semilog analysis. '''Fig. 9''' gives an example of the pressure and pressure derivative type curves for transient matrix flow. Early (fracture-dominated) data are fit by a ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> value indicative of homogeneous behavior. Data in the transition region are fit by curves characterized by a parameter ''β''′. Finally, data in the homogeneous-acting, fracture-plus-matrix flow regime are fit by another ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> curve.
Bourdet ''et al.''<ref name="r6">Bourdet, D. et al. 1984. New Type Curves Aid Analysis of Fissured Zone Well Tests. World Oil (April).</ref> presented type curves for analyzing well tests in dual-porosity reservoirs including the effects of wellbore storage and unsteady-state flow in the matrix. The type curves are useful supplements to the Serra ''et al.'' semilog analysis. '''Fig. 9''' gives an example of the pressure and pressure derivative type curves for transient matrix flow. Early (fracture-dominated) data are fit by a ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> value indicative of homogeneous behavior. Data in the transition region are fit by curves characterized by a parameter ''β''′. Finally, data in the homogeneous-acting, fracture-plus-matrix flow regime are fit by another ''C''<sub>''D''</sub>''e''<sup>2''s''</sup> curve.


<gallery widths="300px" heights="200px">
<gallery widths="300px" heights="200px">
Line 275: Line 275:


[[PEH:Fluid_Flow_Through_Permeable_Media]]
[[PEH:Fluid_Flow_Through_Permeable_Media]]
[[Category:5.8.6 Naturally fractured reservoir]]
[[Category:5.8.6 Naturally fractured reservoir]]
industry, override, viewlinktolatest, wysiwyg
1,729

edits