You must log in to edit PetroWiki. Help with editing

Content of PetroWiki is intended for personal use only and to supplement, not replace, engineering judgment. SPE disclaims any and all liability for your use of such content. More information


Carbon oxygen logs

PetroWiki
Jump to navigation Jump to search

Recompletion of existing wells and the search for bypassed oil in established fields require knowledge of the current oil saturation behind pipe. Carbon/oxygen (C/O) logging was developed for fields with low salinity where a pulsed neutron lifetime log is not useful. However, the nature of this tool limits both its applicability and confidence in the results.

How carbon/oxygen logs work

In fields with connate water salinity > 20,000 ppm chlorides, Pulsed-neutron-lifetime (PNL) logs provide a convenient measurement of water saturation through tubing and casing. If the salinity is low, the neutron lifetime is not determined by the chlorine concentration in the formation. If the salinity is variable, the chlorine concentration does not track the water saturation. In both cases, a PNL log fails to give useful fluid saturations. C/O logging was developed for these situations.

The tools exploit inelastic scattering of high-energy neutrons off carbon and oxygen to induce gamma rays. Spectral analysis of the resulting gamma rays yields the amounts of oxygen and carbon in the volume of investigation. Unfortunately, the carbon sensitivity of the measurement is low. The depth of investigation is extremely shallow (only a few inches into the formation). Such a small volume necessarily includes a large percentage of borehole compared to the amount of formation. It is also true that although carbon is present in oil but not in water, and oxygen is present in water but not in oil, the rock matrix (particularly carbonates) may contain significant amounts of both. Together, these result in substantial borehole and formation effects that must be accounted for in the C/O log-interpretation process.

To obtain a lithology compensation, most C/O tools also record neutron capture spectra in which elements such as calcium, silicon, and iron reveal themselves. Neutron capture only occurs shortly after the neutrons have slowed down to thermal energies. Buffer timing separates inelastic C/O spectra (during the neutron burst) from capture spectra (slightly after the burst). Experience with C/O logging has been uneven at best.

Noteworthy papers in OnePetro

Use this section to list papers in OnePetro that a reader who wants to learn more should definitely read

External links

Use this section to provide links to relevant material on websites other than PetroWiki and OnePetro

See also

Nuclear logging

PEH:Nuclear_Logging