You must log in to edit PetroWiki. Help with editing

Content of PetroWiki is intended for personal use only and to supplement, not replace, engineering judgment. SPE disclaims any and all liability for your use of such content. More information


Air drilling

PetroWiki
Jump to navigation Jump to search

Air drilling—also known as pneumatic percussion drilling[1]—is a technique in which gases, usually compressed air or nitrogen, are used to cool the drill bit and lift the cuttings of a wellbore in place of conventionally used liquids.

Overview

History

Purpose

Types

Functions

Features

Advantages

Because air is the ideal low density drilling medium, air drilling provides many advantages. To achieve the best results and greatest economy, several factors must be considered for air drilling. The best conditions for air drilling involve hard, dry formations that produce relatively few formation liquids. Once the formation is completely dry, or the influx of liquids is small enough to be absorbed in the air stream, the drill cuttings return to the surface as dust. The process allows for the immediate and sustained evaluation of hydrocarbons. [2]

Other advantages of air drilling are low cost, increased rate of penetration, extended bit life, superior control in cavernous and lost circulation areas, and minimal damage to liquid-sensitive pay zones.[3]

The drill string always remains on the bottom when gas is encountered, which is a tremendous advantage in well control. If no gas is in the hole when a trip is made, no gas will be in the hole when the new bit is returned to the bottom. Sometimes holes filled with mud will allow gas to enter the well bore because of reduced hydrostatic pressure, creating well control issues. With air drilling, gas that has already been penetrated will enter the well bore on trips, but the amount of gas is a known quantity that can easily be jetted away from the rig and operating personnel.[4]

Increased rate of penetration occurs because the low density of air or gas used minimizes hydrostatic pressure and aids with fracturing. [5] The rate of penetration in air drilling has been recorded at up to 200 ft/hr compared to 30 ft/hr in conventional drilling.[6]

Disadvantages

Other considerations

References

  1. White, Jeff. 2014. ' 'Air Drilling Improves Efficiencies, Cost' '. The American Oil & Gas Reporter, Special Report: Northeast Activity Profile.
  2. Cooper, L. W., Hook, R. A., & Payne, B. R. 1977. Air Drilling Techniques. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/6435-MS
  3. Cooper, L. W., Hook, R. A., & Payne, B. R. 1977. Air Drilling Techniques. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/6435-MS
  4. Cooper, L. W., Hook, R. A., & Payne, B. R. 1977. Air Drilling Techniques. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/6435-MS
  5. White, Jeff. 2014. ' 'Air Drilling Improves Efficiencies, Cost' '. The American Oil & Gas Reporter, Special Report: Northeast Activity Profile.
  6. Cooper, L. W., Hook, R. A., & Payne, B. R. 1977. Air Drilling Techniques. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/6435-MS

Noteworthy papers in OnePetro

Adewumi, M. A., & Tian, S. 1989. Hydrodynamic Modeling of Wellbore Hydraulics in Air Drilling. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/19333-MS

Adewumi, M. A., & Tian, S. 1990. Analysis of Air Drilling Hydraulics. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/21277-MS

Cooper, L. W., Hook, R. A., & Payne, B. R. 1977. Air Drilling Techniques. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/6435-MS

Hartley, R. C., Weisbeck, D. H., Robert, S., & Smith, M. A. 2011. The Successful Evolution Of An LWD Rotary Steerable System For Air Drilling. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/140260-MS

Malloy, K. P., Medley, G. H., & Stone, R. 2007. Air Drilling in the Presence of Hydrocarbons: A Time for Pause. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/108357-MS

Nas, S. W., Gala, D. M., & Cox, P. 2010. Deep Air Drilling Application to Enhance Rate of Penetration in Extremely Hard, Abrasive and High Temperature Environment. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/132048-MS

Pletcher, J. P., Scarr, A., Smith, J., Swadi, S. N., & Rogers, C. 2010. Application of Air Percussion Drilling Improves Drilling Efficiency in Horizontal Sandstone Wells. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/135308-MS

Ramalho, J. 2007. Changing the Look and Feel of Underbalanced Drilling. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/108358-MS

Vieira, P., Lagrandeur, C., & Sheets, K. 2011. Hammer Drilling Technology - The Proved Solution to Drill Hard Rock Formations in the Middle East. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/140312-MS

Wilhide, S., Smith, J., Doebereiner, D., Raymond, B., Weisbeck, D. H., & Ziemke, B. 2010. First Rotary Steerable System Drilling with Dry Air is Used to Further Improve Low Cost Development of an Unconventional Gas Reservoir. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/135471-MS

Zhao, Z., Gao, D., & Zheng, D. 2010. Mechanism of Well Deviation in Air Drilling and Its Control. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/130201-MS

Zhu, H., Lin, Y., Meng, Y., Zhao, S., Liu, D., & Luo, F. 2010. Influence of Relevant Parameters on Hole Cleaning and Pipe String Erosion in Air Drilling. Society of Petroleum Engineers. http://dx.doi.org/doi:10.2118/126515-MS

External links

Use this section to provide links to relevant material on websites other than PetroWiki and OnePetro

See also

Use this section for links to related pages within PetroWiki, including a link to the original PEH text where appropriate